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The temperature dependence of the magnetization is calculated for a tetragonal crystal structure in which 
each atom has strong ferromagnetic coupling to the nearest neighbors in its own plane, but much weaker 
ferromagnetic or antiferromagnetic coupling to atoms in other planes. It is shown that, for a ferromagnet, the 
decrease of magnetization goes as r3/2 for low temperatures and as r lnr for higher temperatures. The anti-
ferromagnetic sublattice magnetization is shown to have the same temperature dependence as a two-
dimensional ferromagnet with an effective anisotropy energy. The free energy is calculated in both cases 
and the results are used to show that the sublattice magnetization should be slightly larger on the anti-
ferromagnetic side of an exchange-inversion transition. 

RECENTLY, several crystals with a planar mag­
netic structure have been the subject of experi­

mental investigation. The crystals are characterized by 
strong ferromagnetic coupling of each atom to neighbor­
ing atoms in the same plane and a much weaker 
coupling, either ferromagnetic or antiferromagnetic, to 
atoms in other planes. Examples are the hexagonal 
layer compounds CrBr3 and CrCl3, which are ferro­
magnetic1 and antiferromagnetic,2 respectively, at low 
temperatures. Another example is chromium-modified3,4 

Mn2Sb which exhibits a first-order exchange inversion 
transition, from a ferrimagnetic to an antiferromagnetic 
state, with decreasing temperature. 

The purpose of the present paper is to calculate the 
temperature dependence of the magnetization and the 
free energy in the type of structure described above, 
using spin-wave theory. The calculations are done for 
temperatures which are small compared to the Curie 
temperature (or, equivalently, to the intraplanar 
exchange interaction) but which can be large compared 
to the interaction between planes. The free energy 
expressions are used to study Kittel's model of the 
exchange-inversion transition5 in order to compare the 
sublattice magnetizations on opposite sides of the 
transition. 

FERROMAGNETIC INTERACTION 

The model we shall use is a tetragonal magnetic 
lattice with strong ferromagnetic coupling, Jh to the 
four nearest neighbors in the (001) plane, but with 
much weaker coupling, Ji, to the two nearest neighbors 
in adjacent planes. The nearest neighbor distances in 
the transverse and longitudinal directions are, respec­
tively, at and ai. The results can easily be extended to 
other planar structures. 
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The Hamiltonian is written in the Heisenberg form: 

(1) 3C--

The sum j is over the N atoms of the lattice, while 
the sum 5 is over nearest neighbors; HA is the effective 
anisotropy field. We write the Hamiltonian to bilinear 
terms in spin-wave operators as 

3C= -NS2 £ J,-2fjL0HANS+SC0; 

3Co=2S £ £ /«( l-cosk-6)Jk^k+2M 0f l rA £ ^bk. 
k 5 k 

From (2) the magnon dispersion relation is 

cok=2S £ J § (1 — cosk -h)+2fjioHA. 
5 

(2) 

(3) 

For small kx, ky, kz, surfaces of constant cok will be 
ellipsoids with the major axis in the kz direction. The 
zone boundaries at kz=zLir/ai will be encountered at 
much lower values of cok than the boundaries along the 
other axes. An appropriate expansion of a>k is then 

o>k=2SJtkt
2+4:SJl(l-coskz)+2/jLoHA, (4) 

where kt
2~kz

2+ky
2. In this relation we have eliminated 

the lattice coordinates ah ai by making the coordinate 
transformation atkx, atky, aikz —> kXy ky, kz. 

Using Ms—2Spio/at2ai as the saturation magnetization 
of a simple tetragonal lattice, we have 

MF(T) AMF(r) Mt 1 

X 
T /»7T /.7T 

•set 
J —TT J —IT J — 

(M tC ajt*- fC yU/FCz 

»k/r__;[ 
•• ( 5 ) 

For r<SJt this integral will be uneffected if the'limits 
of the kX} ky integrations are extended to infinity. Then 

AMF 
r
F 1 / r \ /•* 
- = ( — ] / dk 

Xln 1-exp (1 —cosfe)-
2/JLOHJ 

• ] ) • 
(6) 
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FIG. 1. Comparison of exact expression for AMF/M8 with high-
temperature expansion. Curve A, numerical evaluation of 
AMF/MS. Curve B, first three terms in high-temperature expan­
sion of AMF/MS. 

For HA=0, (6) can be expanded in powers of SJi/r by 
noting that 

In (1-0-*) = ln# 1 1 . 
2 24 

Upon expanding the integrand of (6) in this manner, 
and then performing the integration between the limits 
shown, the following expansion for the magnetization 
is obtained: 

r 1 r 

M F ( T ) = M S 1 
L 4TT5 2 5 / , 

r Ji 
Xln +0(T-*) . (7) 

] • 2SJi AwSJt SwJtr 

This is the expected form of the magnetization for 
SJl«T<SJf 

The leading terms in this expansion do not give a 
good approximation to (6) if T^SJI. In that region one 
can extend the upper limit of the kz integral in (6) to 
infinity and obtain an expression similar to Dyson's 
expansion in half-integral powers of r6 : 

MF(T) = MS\1 

r 3/2 

8TT3/25 (ISyiVJi112 
-m-

192TT3/25 

JI 3 -r5/2 r Ji 3-1 

x 3-+- r(f)+o(r^2; 
(2Syf2JtJi*'2\- Jt 2J 

) ; (8) 

here f (z) is the Riemann zeta function. Equation (8) 
is analogous to the expression of Gossard et al. for 
CrBrg.1 

Figures 1 and 2 compare the results of a numerical 
evaluation of (6) with the two expressions (7) and (8), 
respectively. I t is seen that the expansion (8) is valid 
only for r^J 85/*. The change of AMV(r) from a r3/2 law 
to a r lnr law for large r is analogous to the transition 
of the specific heat of graphite from a r3 to a r2 law with 

increasing temperature.7 For graphite the small elastic 
stiffness constant between adjacent hexagonal layers 
produces a phonon dispersion relation analogous to 
Eq. (4). 

ANTIFERROMAGNETIC INTERACTION 

Our model is the same as that of the preceding sec­
tion, with the exception that the interplanar coupling 
Ji now favors antiferromagnetism. The Hamiltonian is 

3C= —Jt S Sy Sj+8t-\~Ji Zl Sj'Sj+ti 
3,St 3>&t 

-2JJLQHA Z) Sy/+2/x0#A X) Sjt (9) 

The coupling within each lattice plane, Jt, is ferro­
magnetic. The antiferromagnetic coupling between 
planes produces a ground state consisting of two sub-
lattices with spins directed in opposite directions; the 
two planes adjacent to any plane of one of the sub-
lattices belong to the opposite sublattice. In (9) the 
spins of sublattice a point in the +z direction. 

The methods of Anderson8 or Kubo9 enable us to 
reduce the Hamiltonian (9) to a spin-wave Hamiltonian. 
To bilinear terms in spin-wave operators we have 

X ^ - i V ^ E s \J8\-2NIJLOHAS+3CQ', 

There are two spin-wave states for each k as indicated 
by the two sets of occupation numbers. The second 
summation over k gives the zero-point lowering of the 
energy. The magnon spectrum, cok, is given by 

cok^W-co!2)1 /2 ; (11) 

here 
o)0=4:JiS+4:SJt(2—cos&z— cosky)+2fjLoHA; 

W l = 4 / i 5 c o s ( V 2 ) . (12) 
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FIG. 2. Comparison of exact expression for AMF/M8 with 
low-temperature expansion. Curve A, numerical evaluation of 
AMF/M8. Curve B, r3/2 and r5/2 terms in low-temperature expan­
sion of AMF/M8. 
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In these relations we have again transformed to 
dimensionless wave vectors k. 

For a cubic lattice, the temperature dependence of 
the sublattice magnetization is given by 

AMA(T) 

Ms 

"1 /»7T /»7T /• TV 

= ; / / dkxdkydkz 

s(2TyJ-J-J-„ 
fl /coo \ wo/wk 1 

X - 1 ) + — — • (13) 
l2\cok / ea**T-l\ 

The first term in the integrand is the zero-point lowering 
of the sublattice magnetization. We again set HA — 0. 
Since Ji<KJt, cok can be expanded in the following series: 

<ak = 2SJtkf+^SJi 

- 4 5 / / — - ) c o s * ( - ^ +o(—) . (14) 

We see that cok~co0 except for a small region around 
kt=0. For Ji/Jt sufficiently small we can neglect the 
remaining terms in a>k and take cuk = co0. In this approxi­
mation all the zero-point effects vanish and the calcula­
tion of MA (r) is greatly simplified. As a specific example, 
for Ji/Jt=0.1, the zero-point decrease in sublattice 
magnetization is only 0.003/5, as compared with 
Anderson's value of 0.078/5 for a completely anti-
ferromagnetic cubic lattice.8 

In the approximation cok~^o, Eq. (13) may be 
integrated exactly: 

MA(T) = MJ1+-
4wS\2SJtJ 

l n [ l - e x p ( - 4 S V r ) ] 

(15) 

The magnetization curve of CrCU appears to be fit 
very well by an expression of this form.2 Our result has 
the same form as that of a two-dimensional ferromagnet 
with an anisotropy energy of 4 5 / ; . 

FREE ENERGY AND APPLICATION TO EXCHANGE-
INVERSION TRANSITIONS 

The free energies of the ferromagnetic and anti-
ferromagnetic lattices are evaluated from the expression 
F= — r l n Z . Using the appropriate boson partition 
function Z, the free energy per atom at HA — 0 is given 
by 

F(r) 

N 

_ /»7T /.7T «7T 

- 4 / ( 5 2 - 2 / J 5 2 / / / dkx, 
( 2 x ) 3 ; _ y _ y_, 

'ft/KyCLRrg 

(2TY 

X l n [ l - e x p ( - « k / T ) ] . (16) 

This expression is exact for the ferromagnetic problem 
and holds for the antiferromagnetic case in the limit 
cok^coo. We evaluate (16), using for cok first Eq. (4) 
with 5 ^ = 0, and then the first two terms of (14). The 

results in the two cases are, for SJi<^r<SJt: 

FF(r) 

N 
- = = _ 4 / < 5 2 - 2 / z 5 2 

7TT2 TJ I T 

4SSJt 2wJt 2SJi 
•In + • - . , (17) 

FA(T) 

N 
-=-4:JtS2-2JlS

2 

4857, 

rJi ( r \ 
-+ ( l+ln ) + . . - . (18) 
t 2irj\ 4:SJiJ 

The free energies (17) and (18) can be applied to 
KittePs model of the exchange-inversion transition.5 

In that model, the interaction between planes is 
assumed to be of the form Ji——p(a—ac), where a is 
the spacing between planes and ac is the spacing at 
which the interaction would change from ferromagnetic 
to antiferromagnetic. The free energy of the entire 
system is 

F=iRV(a-aT)2+Fmag. (19) 

The first term of (19) is the free energy of the lattice; 
R is an elastic stiffness constant, ar is the equilibrium 
spacing between planes in the absence of the magnetic 
interactions, and V is the volume. The temperature 
dependence of the free energy enters primarily through 
the temperature dependence of ar. Kittel takes 
^mag=zFp /(^— ac)VM2, where the upper sign corre­
sponds to the ferromagnetic state and the lower to the 
antiferromagnetic state.10 M is the sublattice magnetiza­
tion. The equilibrium values of a in the two states, CLF 
and dA, are found by setting dF/da=0. The transition 
from one state to the other will occur when FieTT(r) 
—^antif(r) goes through zero. Using the form of F m a g 

mentioned above, Kittel finds that the transition occurs 
at a temperature such that aT{j) — ac. Furthermore, 
the equilibrium values of a at this temperature obey 
the relation 

dF—dc—ac—aA' (20) 

One might expect that, if the temperature-dependent 
functions (17) and (18) are used for F m a g in Eq. (19), 
the simple results quoted above would no longer hold. 
Upon carrying out the steps described above with the 
new form of Fm a g , it is found that the condition for a 
transition to occur, aT=ac, is replaced by 

aT(r) 
(N pr 

V/4nrRJt 

( l - l n 2 ) . (21) 

However, it is found that the lattice spacing on opposite 
sides of the transition still obeys Eq. (20). This relation 

10 The parameter p' differs from the p introduced earlier by-
dimensional factors, so that Fmag will have the dimensions of an 
energy. 
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states that the longitudinal coupling, Ji, changes sign 
during the transition, but its magnitude is the same on 
both sides. 

Equations (7) and (15) can then be compared directly 
at the transition temperature: 

MA-MF r ln2 
= . (22) 

The sublattice magnetization in the antiferromagnetic 
state is expected to be slightly larger than the magneti­
zation in the ferromagnetic state. The quantity on the 
right side of (22) would be of the order of 10~2 for 
reasonable choices of the parameters. 

Note added in proof. A. Yoshimori p?hys. Rev. 

INTRODUCTION 

TH E magnetoplasma resonance considered in this 
paper is a dynamic form of the Hall effect, which 

was first observed in Na at 4°K.1 The effect can be ob­
served as a standing, circularly polarized electromag­
netic wave in a pure metal sample.1-4 A detailed study 
of the frequencies of the resonance in many parallele­
piped samples was made by Rose, Taylor, and Bowers.2 

This paper is an extension of that work with higher 
resolution which has brought to light the existence of 
satellite structure on the resonances observed previously. 

Rose et al? considered rectangular parallelepiped 
samples with sides X, Y, and Z placed in a large mag­
netic field along the z direction. I t was assumed that 
the standing wave pattern in the sample would have an 
integral number of half-wavelengths in each of the three 
directions. A series of resonances was observed corre-
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130, 1312 (1963)] has derived similar results for anti-
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for the ferromagnetic interaction. A. Narath [Phys. 
Rev. 131, 1929 (1963)], has extended the measure­
ments on CrCl3 to below 1°K and has found that the 
approximation cok=co0 introduces errors in the predicted 
magnetization curve that are larger than the experi­
mental uncertainties. 
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sponding to modes with a single half-wavelength in 
each of the x and y directions, but a varying number of 
half-wavelengths in the z, or field, direction. Other in­
vestigators3'4 have also reported modes with varying 
numbers of half-wavelengths along the magnetic field. 
However, no modes with more than one half-wavelength 
in either of the directions transverse to the magnetic 
field have been reported. We shall call such modes 
"transverse modes." The present work observes and 
examines the resonant peaks which arise from these 
transverse modes. These appear as satellites of those 
peaks observed by previous investigators. 

The increased resolution which made this work pos­
sible was due to two new features in the instrumentation. 
First, phase-sensitive detection increased the signal to 
noise ratio by an order of magnitude5; and second, the 
use of a magnetic field of 27.4 kG produced resonances 
having a Q of from 20 to 30 in the very pure Na 
(P3OO°K/P4°K«7500). This Q is 3 to 4 times greater than 
the highest Q's previously reported for the magneto-
plasma effect. 

THEORY 

The dispersion relation for the magnetoplasma wave 
propagating in an unbounded metal (neglecting elec-

5 M. T. Taylor, J. R, Merrill, and R. Bowers, Phys. Rev. 129, 
2525 (1963). 
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The low-frequency magnetoplasma resonance (''whistler" or "helicon") has been studied in rectangular 
parallelepiped samples of Na at 4°K using improved measuring techniques and higher magnetic fields in 
order to obtain greater resolution. Structure in the resonance was observed as satellites of the previously 
reported resonances. The observed frequencies of these satellites fit the simple formula reported earlier. 


